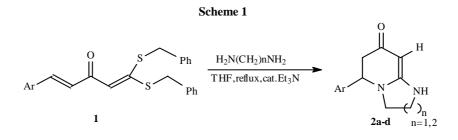
α-Oxo Ketene Dithioacetals Chemistry-A Facile Route to the Synthesis of Fused Heterocyclic Compounds

Mei Xin ZHAO, Qun LIU*, Yu Lan HU, De Long LI


Department of Chemistry, Northeast Normal University, Changchun 130024

Abstract: The fused heterocyclic compounds **2** : imidazo [1,2-a] pyridine **2a-c** and pyrido [1,2-a] pyrimidine **2d** were obtained from the reaction of α -cinnamoyl ketene dibenzylthio acetals **1** with diamine. When α -cinnamoyl - α '-benzoyl ketene N, N-acetals **3a-b** were treated by t-BuONa/t-BuOH solution, 8- benzoyl-pyrido[1,2-a] pyrimidine **4** was produced.

Keywords: α -Cinnamoyl ketene dibenzylthio acetals, diamine, α -cinnamoyl- α '-benzoyl ketene N, N-acetals, fused heterocyclic compounds

 α -Oxo ketene dithioacetals and related compounds are versatile synthons in organic synthesis¹⁻³. The substitution reaction of α -oxo ketene dimethylthio acetals with diamine is one of the important applications for the synthesis of corresponding α -oxo ketene cyclic N, N-acetals. Junjappa and co-workers described this reaction in a review². However, since some kinds of ketene dimethylthio acetals are not easy to prepare, the method mentioned above is limited. Zhu and co-workers had successfully synthesized some simple α , α '-dioxo (ester) ketene cyclic N, N-acetals by the substitution reaction of α , α '-dioxo (ester) ketene cyclic N, N-acetals by the substitution reaction of α , α '-dioxo (ester) ketene cyclic S,S-acetals with ethylenediamine⁴, and we also reported the synthesis of α , α '-dicinnamoyl ketene cyclic N,N-acetals by the similar reaction in a previous paper⁵. The process provided a new method for the synthesis of this special kind of N,N-acetals which can not be easily obtained by other methods.

Recently, in order to compare the activity of various alkylthio groups to the substitution reaction, α -cinnamoyl ketene dibenzylthio acetals **1** were chosen as substrates to react with diamine in our work. However, instead of α -cinnamoyl ketene cyclic N, Nacetals, fused heterocyclic compounds **2** imidazo [1,2-a] pyridine(n=1) and pyrido [1,2-a] pyrimidine (n=2) were resulted. (Scheme 1)

Mei Xin ZHAO et al.

From the experimental results, it should be assumed that the process involves the substitution reaction of α -cinnamoyl ketene dibenzylthio acetals with diamine and a consecutive intramolecular Michael addition. According to this consideration, when α -cinnamoyl- α -benzoyl ketene cyclic N, N- acetals **3** were treated with t-BuONa/t-BuOH solution, **3b** (n=2) was converted into the expected fused heterocyclic compounds **4**, 8-benzoyl-pyrido[1,2-]pyrimidine, **3a** (n=1) did not react at all (**Scheme 2**). Due to the substrates can be obtained easily ^{6,7}, the method mentioned above provide a facile route to the synthesis of fused heterocyclic compounds **2** and **4**. The studies on the intramolecular Michael addition of the other kinds α -cinnamoyl ketene cyclic N, N- acetals to obtain the fused heterocyclic compounds are in progress. The structures of all the compounds were characterized by their IR, ¹H NMR. Compounds **2a** was taken as example: IR: 3432 (N-H), 2360, 1610, 1455, 699 ¹H NMR: 2.70 (2H, d, J=8.0, CH₂), 3.48(4H, s, 2 ×NCH₂), 4.31(1H, t, J=8.0, CH), 4.56 (1H ,broad, NH), 7.18 (1H,s, =CH) 7.01~7.06 (5H ,m, ArH)

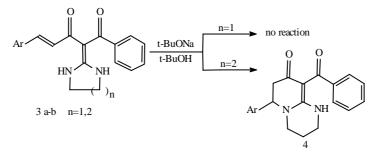


Table 1 Melting points and yields of the title compounds

Entry	Substrate	n	Ar	Product	Yield (%)
1	1a	1	C_6H_5	2a	23.4
2	1b	1	3,4-OCH ₂ OC ₆ H ₃	2b	24.8
3	1c	1	$4-CH_3C_6H_4$	2c	20.1
4	1d	2	C_6H_5	2d	74.9
5	3b	2	C_6H_5	4	24.8

References

- 1. R.K.Dieter, Tetrahedron, 1986, 42, 3029.
- 2. H.Junjappa, H.Ila, and C.V. Asokan, Tetrahedron, 1990, 46, 5423.
- 3. Q.Liu and Z.Y.Yang, chinese J.Org. Chem., 1992, 12, 225.
- 4. Z.M.Zhu, Y.Wang, Y.T.Xu, Z.M.Mei, Q.Liu, J.H.Hu, Chinese. Chem. Lett., 1997, (8), 367.
- 5. M.X.Zhao, Q.Liu, F.S.Liang et al. Chinese Chem. Lett., 1998, (3), 231.
- 6. L. Ai, Northeast Normal University Master Degree Thesis, 1998.
- 7. M.X.Zhao, Northeast Normal University Master Degree Thesis, 1999.

Received 4 November 1999